

Inflamación y DM: iniciando el daño cardiovascular

Dr. Chih Hao Chen Ku, FACE

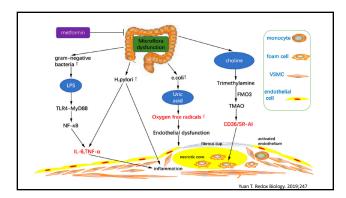
Servicio de Endocrinología, Hospital San Juan de Dios

Departamento de Farmacología y Toxicología Clínica, Universidad de Costa Rica

EndoDrChen.i

Conflictos de interés

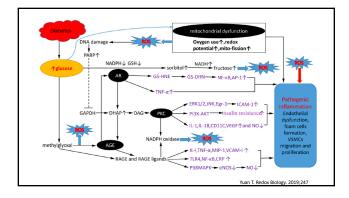
- Conferencista: Astra Zeneca, Abbott Nutrición, Novartis Oncology, Novo Nordisk, Merck Sharp & Dohme, Roche, Glaxo SmithKline, Sanofi Aventis, Bayer, Pfizer, Novartis
- Advisory Board: Novartis Oncology, Sanofi Aventis, Astra Zeneca, Novo Nordisk, Stendhal, Pfizer
- Investigación clínica: Astra Zeneca, Novartis Pharma Logistics Inc., Merck Sharp & Dohme, Glaxo SmithKline, Organon, Boehringer Ingelheim, Roche, Novo Nordisk

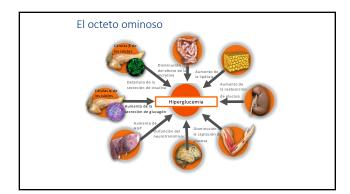

EndoDrChen.com

Preguntas a discutir:

- Controlar la inflamación... previene diabetes?
- Controlar inflamación... puede reducir Hba1c?
- Reducir inflamación puede conferir protección de lesión de órgano blanco?
- Controlar inflamación como tal, puede reducir eventos vasculares en diabetes?

	1

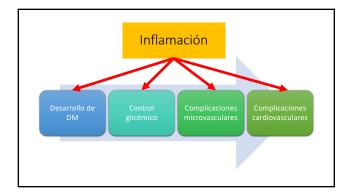


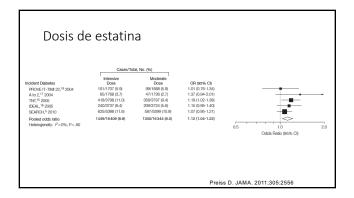

Tejido adiposo

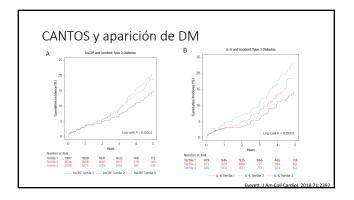
- Libera adipoquinas
- Leptina estimula secreción de TNF
- Resistina induce liberación de citoquinas inflamatorias
- Tejido adiposo también secreta citoquinas que estimulan secreción de CRP por el hígado

Lana I. Mai Das Die 2010; aulias 27 au

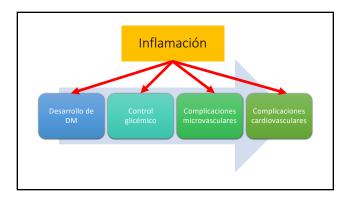
Hígado	
Citoquinas y adipoquinas pueden producir activación e infiltración de	
células de Kupffer	
Lope L. Mol Bas Dis. 2018; online 27 aug	
Cerebro	
 Obesidad induce vías inflamatorias en hipotálamo lo que lleva a apoptosis de células hipotalámicas 	
 Desregulación de homeostasis energética Cierta asociación entre obesidad y esclerosis multiple 	
Restricción calórica podría proveer beneficios	
Lope L. Mol Bas Dis 2018; online 27 aug	
tops a rise due instance, crime as ong	•
Páncreas	
Ácidos grasos inducen inflamación en islotes	
 Saturados, como ácido palmítico llevan a fallo de células beta Insaturados, como ácido oleico, tienen efecto protector, con menos apoptosis de células beta 	
Citoquinas inflamatorias producen destrucción y desdiferenciación de las células beta	-
 El más importante es el IL-1 beta Hiperglicemia como tal induce liberación de IL-1 beta 	-
Glucotoxicidad y lipotoxicidad	

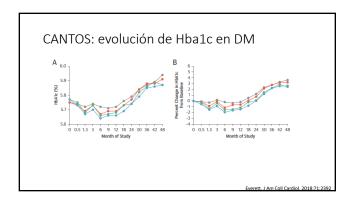


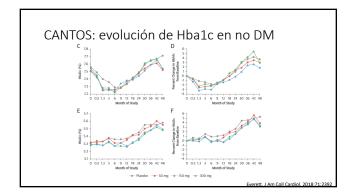

Impacto de inflamación en riesgo CV

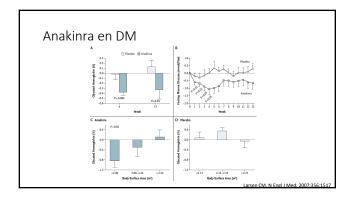


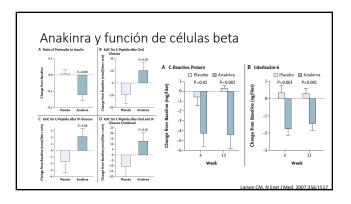
5 5 5			
Recomendaciones EULAR 2016			
Recommendations			
1. Disease activity should be controlled optimally in order to lower CVD risk in all patients with RA, AS or PsA	2b-3	В	9.1 (1.3)
CVD risk assessment is recommended for all patients with RA, AS or PsA at least once every 5 years and should be reconsidered following major changes in antirheumatic therapy	3-4	C	8.8 (1.1)
 CVD risk estimation for patients with RA, AS or PsA should be performed according to national guidelines and the SCORE CVD risk prediction model should be used if no national guideline is available 	3-4	C-D	8.7 (2.1)
4. TC and HDLc should be used in CVD risk assessment in RA, AS and PsA and lipids should ideally be measured when disease activity is stable or in remission. Non-fasting lipids measurements are also perfectly acceptable	3	С	8.8 (1.2)
5. CVD risk prediction models should be adapted for patients with RA by a 1.5 multiplication factor, if this is not already included in the model	3–4	С	7.5 (2.2)
Screening for asymptomatic atherosclerotic plaques by use of carotid ultrasound may be considered as part of the CVD risk evaluation in patients with RA	3-4	C-D	5.7 (3.9)
7. Lifestyle recommendations should emphasise the benefits of a healthy diet, regular exercise and smoking cessation for all patients	3	c	9.8 (0.3)
8. CVD risk management should be carried out according to national guidelines in RA, AS or PsA, antihypertensives and statins may be used as in the general population	3-4	C-D	9.2 (1.3)
9. Prescription of NSAIDs in RA and PsA should be with caution, especially for patients with documented CVD or in the presence of CVD risk factors	2a-3	С	8.9 (2.1)
10. Corticosteroids: for prolonged treatment, the glucoconticoid dosage should be kept to a minimum and a glucocontricoid taper should be attempted in case of remission or low disease activity, the reasons to continue glucocontricoid therapy should be regularly checked	3-4	C	9.5 (0.7)
		Agca R. A	nn Rheum Dis. 2017;76:17

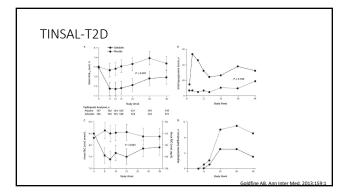






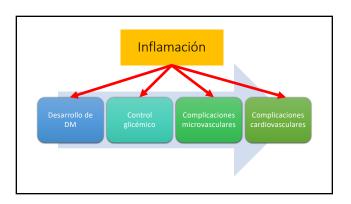



			Canakinu	mab Dose	
	Placebo	50 mg	150 mg	300 mg	All Doses Combined
Adjudicated new-onset diabetes					
N events/N at risk	246/1,645	161/1,089	171/1,094	169/1,132	501/3,315
Incidence rate*	4.20	4.24	4.35	4.12	4.23
Hazard ratio (95% CI)	_	1.04 (0.85-1.27)	1.03 (0.85-1.26)	0.98 (0.80-1.19)	1.01 (0.87-1.18
p valuet	-	0.70	0.75	0.80	0.86
All physician-reported diabetes					
N events/N at risk	279/1,645	186/1,089	191/1,094	190/1,132	567/3,315
Incidence rate*	4.84	4.97	4.92	4.68	4.85
Hazard ratio (95% CI)	_	1.06 (0.88-1.27)	1.02 (0.84-1.22)	0.97 (0.80-1.16)	1.01 (0.88-1.17
p value†	_	0.56	0.88	0.70	0.89



_				
Sal	110	٦H	at	OS

- No contienen acetil por lo que no puede inhibir COX
- Salsalato o trilisato son prodrogas de salicilatos
- TINSAL-T2D


inlidfine AR Ann Inter Med 2013:159:

Efecto de antidiabéticos

Antidiabétio	cos e inflamac	ión
Antidiabetic agent	s Anti-inflammatory effects	Reno-protective effects
Insulin	Prevents ICAM-1, MCP-1, TNF-x, NF-xb, TLRs expression, and induces NO release	
Biguanides	Suppress inflammation by inhibition of ox stress, IL-18, TNF-a, MMP-9, COV-2, IL-1 NF-xb, and rise in NO biovaliability; de the neutrophil to lymphocyte ratio	10, prevent kidney injuries in diabetic animals
Sulfonylareas	Prevent inflammatory responses by MAPI NF-ab-dependent pathway, suppress TM cytokines, VCAM-1, PSTAT6, TMF-s, NF caspase-3, PGE2, and IL-10 expressions: NLRP3 inflammasome; ameliorate oxidat stress	eb, inhibit
Thiazolidinediones	Prevent macrophage activation: reduce expression of CRP, MMP-9, ICAM-1, PA IL-1, and IL-6	Prevent NF-sb activation and macrophage infiltration; down-regulate IL-6, CRP, MMP-9, and TNF-a in renal mesangial cells; ameliorate inflammation in renal tubular epithelial cells via NF-sb inhibition
DPP-4 inhibitors/G receptor agonists		mation Inhibit the inflammatory cytokine expression through NF-xb inhibition in renal glomeruli
Alpha glucosidase	inhibitors Reduce ICAM-1, VCAM-1, IL-6, IL-1β, TNI and CRP expression	F-α, No verified effects
SGLT21	Downregulate MCP-1, TGF-18, IL-6, TNF- and CRP expression	 Prevent p65 and TLR4 activity; down-regulate MCP-1; ICAM-1, PAI-1, TGF-6, type-4 collagen, and OPN expression, CD68 macrophage accumulation
Meglitinides	No verified effects	No verified effects
		Yaribevei H. J Cell Phy

References	Gliflozin	Leptin	Adiponectin	hsCRP	TNF-α	IL-6	IFN-1
Ferrannini et al., 2010 [21]	Dapa	NA	NA	1	NA	NA	NA
Bailey et al., 2012 [18]	Dapa	1	T	NA	NA	NA	NA
Okamoto et al., 2016 [22]	Dapa	NA	7	1.	NA	NA	NA
Matsumura et al., 2017 [19]	Cana	NA	ř	NA	1	NA	NA
Hattori, 2017 [23]	Empa	NA	NA	1	NA	NA	NA
Tobita et al., 2017 [24]	Dapa	NA	t*	i	NA	NA	NA
Sato et al., 2018 [25]	Dapa	NA	NA	NA	1.	NA	NA
Garvey et al., 2018 [20]	Cana	1.0	1	1	Ť	NA	NA
Tan and Tan, 2018 [26]	Empa	NA	NA	NA	i*	1,	1
	Empa where * (P < 0.05) indic rotein; TNF-ox: tumour ne	ates significant	changes.		mma; Dapa: dapagl	T.	ı,

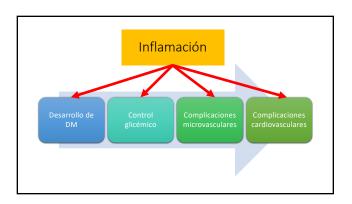
Inflamación	٠,	nouro	natía
IIIIIaIIIaCioii	У	Heuro	paua

- Múltiples estudios bloqueando productos avanzados de glicosilación no han sido efectivos
- Modular inflamación no ha sido exitoso en manejo de neuropatía

Inflamación y nefropatía

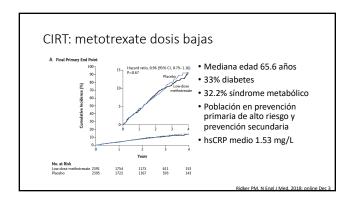
- Macrófagos infiltran riñon
 - Ciclo de liberación de citoquinas y reclutamiento de monocitos y macrófagos
 Cambios estructurales relacionados a inflamación

 - Infiltración y degranulación por mastocitos
 - Correlacionan con la pérdida de función renal


Inflamación y nefropatía diabética

Drug	Target	Identifier	Study population	Outcomes
Pentoxifylline	Inflammatory Cytokines	EudraCT number 2007-005985-10	Type 2 diabetes eGFR 15–60 UAE >30 mg/24 h	Mean difference in UAE of 21% $(p < 0.001)$ and eGFR decline 4.3 mL/min/1.73 m ² lower than in the placebo group $(p < 0.001)$
Baricitinib	JAK1/JAK2	NCT01683409	Type 2 diabetes Macroalbuminuria eGFR 20–75 mL/min/1.73 m ²	Albuminuria reduction by 40% No effect on eGFR
Emanticap Pegol (NOX-E36)	CCL2	NCT01547897	Type 2 diabetes eGFR >25 mL/min/1.73 m ² UACR >100 mg/g	Albuminuria reduction by 29% compared with baseline ($p < 0.05$), but no significant difference with placebo
CCX 140-B	CCR2	NCT01447147	Type 2 diabetes eGFR ≥25 mL/min/1.73 m ² UACR 100–3,000 mg/g	18% reduction of albuminuria compared with placebo (p < 0.0004 in the 5 mg group. No reduction of albuminuria in the 10 mg group
CTP-499	PDE	NCT01487109	Type 2 diabetes eGFR no limit UACR 300-5,000 mg/g	16% UACR reduction
LY3016859	TGF-a/epiregulin	NCT01774981	eGFR <90 mL/min/1.73 m ² UACR >400 mg/g	Study ongoing. No results available

Perez-Morales RE. Nephron. 2018; online oct 1.


PREDIAN: pent	Control Group	PTF Group	P Value between Groups
eGFR (ml/min/1.73 m²)			
Mean baseline±SD	37.6±11.9	37.1±12.4	
Least-square mean change±SEM (95% CI) per follow-up period			
6 mo	-1.7±0.1 (-2.1 to -1.4)	-1.4±0.1 (-1.7 to -1.0)	0.1
12 mo	-3.4±0.3 (-4.1 to -2.8)	-1.2±0.3 (-1.9 to -0.6)	< 0.001
18 mo	-5.3±0.3 (-6.1 to -4.5)	-1.7±0.4 (-2.5 to -0.9)	< 0.0001
24 mo	-6.5±0.4 (-7.3 to -5.6)	-2.1±0.4 (-3.0 to -1.2)	< 0.0001
UAE			
Median baseline (IQR) (mg/d)	1000 (600-1800)	1100 (689-2190)	
Least-square mean percentage change per follow-up period±SEM (95% CI)			
6 mo	1.4±1.1 (-0.8 to 3.8)	-10.6±1.2 (-13.0 to -8.2)	< 0.001
12 mo	4.9±2.8 (-0.7 to 10.6)	-13.0±2.9 (-18.8 to -7.2)	< 0.0001
18 mo	4.9±2.6 (-0.3 to 10.1)	-14.8±2.7 (-20.1 to -9.4)	< 0.0001
24 mo	5.7±2.7 (-0.3 to 11.1)	-14.9±2.7 (-20.4 to -9.4)	< 0.0001
Patients per follow-up period (n)			
6 mo	87	81	
12 mo	85	81	
18 mo	84	79	
24 mo	82	78	

DIAN: pent	Control Group (n=87)	PTF Group (n=82)	P Value
Hospitalization episodes	32 (36.7)	24 (29.2)	0.29
Cardiovascular events	(,	()	
Myocardial infarction	2 (2.3)	1 (1.2)	0.59
Stroke	2 (2.3)	1 (1.2)	0.59
Heart failure	4 (4.5)	3 (3.6)	0.75
Revascularization	5 (5.7)	2 (2.4)	0.28
Syncope	1 (1.1)	0	
Noncardiovascular events			
ESRD	3 (5.7)	2 (2.4)	0.60
AKI	4 (4.5)	5 (6.0)	0.31
Digestive symptoms	9 (10.3)	18 (21.9)	0.03
Hemorrhoid bleed	2 (2.3)	1 (1.2)	0.59
Pneumonia	1 (1.1)	2 (2.4)	0.52
Eye disorders	3 (5.7)	3 (3.6)	0.94
Malignant neoplasms	1 (1.1)	0	

CVD event (N=2,258) Events/persons Event rate Adjusted						
C V D event (1V = 2,236)	Events/persons	(per 100 person-years)	HR ^a (95% CI)			
Major cardiovascular event						
Placebo Atorvastatin subgroups	74/1,115	2.33	1			
LDL-c <1.8 mmol/l, CRP <19.0 nmol/l	14/400	1.14	0.44 (0.25, 0.78)			
LDL-c <1.8 mmol/l, CRP ≥19.0 nmol/l	16/352	1.59	0.69 (0.40, 1.19)			
LDL-c ≥1.8 mmol/l, CRP <19.0 nmol/l	5/177	0.98	0.47 (0.19, 1.16)			
LDL-c ≥1.8 mmol/l, CRP ≥19.0 nmol/l	7/214	1.24	0.68 (0.31, 1.47)			
Any cardiovascular event						
Placebo	116/1,115	3.73	1			
Atorvastatin subgroups						
LDL-c <1.8 mmol/l, CRP <19.0 nmol/l	24/400	1.99	0.55 (0.35, 0.86)			
LDL-c <1.8 mmol/l, CRP ≥19.0 nmol/l	28/352	2.84	0.73 (0.48, 1.12)			
LDL-c ≥1.8 mmol/l, CRP <19.0 nmol/l	7/177	1.38	0.41 (0.19, 0.89)			
LDL-c ≥1.8 mmol/l, CRP ≥19.0 nmol/l	15/214	2.72	0.69 (0.39, 1.23)			

CANTOS: desenlaces según status glicémico C Relative Risk of MI, Stroke, or Cardiovascular Death Incidence per 100 py Placebo Canakinumab Diabetes 5.53 4.68 Pre-Diabetes 3.93 3.38 Normoglycemia 3.43 2.78 Overall 4.50 3.86 Overall 4.50 3.86 Everett, B.M. et al. J Am Coll Cardiol. 2018;71(21):2392-401.

Conclusiones

- Hay una relación bidireccional entre diabetes e inflamación
- Pacientes con mayores niveles de marcadores inflamatorios hacen más DM
- Control de inflamación puede tener impacto en control glicémico
- Muchos antidiabéticos tienen propiedades antiinflamatorias
- Bajar inflamación en diabéticos reduce eventos cardiovasculares
- Bajar inflamación puede tener impacto en nefropatía diabética

Puede descargar la presentación en:

Preguntas...

chenku2409@gmail.com

www.EndoDrChen.com